悟空视频

    在线播放云盘网盘BT下载影视图书

    Joy RL:强化学习实践教程 - 图书

    2025计算机·理论知识
    导演:江季 王琦 杨毅远
    本书是继《Easy RL:强化学习教程》(俗称“蘑菇书”)之后,为强化学习的读者专门打造的一本深入实践的全新教程。全书大部分内容基于3位作者的实践经验,涵盖马尔可夫决策过程、动态规划、免模型预测、免模型控制、深度学习基础、DQN算法、DQN算法进阶、策略梯度、Actor-Critic算法、DDPG与TD3算法、PPO算法等内容,旨在帮助读者快速入门强化学习的代码实践,并辅以一套开源代码框架“JoyRL”,便于读者适应业界应用研究风格的代码。与“蘑菇书”不同,本书对强化学习核心理论进行提炼,并串联知识点,重视强化学习代码实践的指导而不是对理论的详细讲解。 本书适合具有一定编程基础且希望快速进入实践应用阶段的读者阅读。
    Joy RL:强化学习实践教程
    图书

    Joy RL:强化学习实践教程 - 图书

    2025计算机·理论知识
    导演:江季 王琦 杨毅远
    本书是继《Easy RL:强化学习教程》(俗称“蘑菇书”)之后,为强化学习的读者专门打造的一本深入实践的全新教程。全书大部分内容基于3位作者的实践经验,涵盖马尔可夫决策过程、动态规划、免模型预测、免模型控制、深度学习基础、DQN算法、DQN算法进阶、策略梯度、Actor-Critic算法、DDPG与TD3算法、PPO算法等内容,旨在帮助读者快速入门强化学习的代码实践,并辅以一套开源代码框架“JoyRL”,便于读者适应业界应用研究风格的代码。与“蘑菇书”不同,本书对强化学习核心理论进行提炼,并串联知识点,重视强化学习代码实践的指导而不是对理论的详细讲解。 本书适合具有一定编程基础且希望快速进入实践应用阶段的读者阅读。
    Joy RL:强化学习实践教程
    图书

    Easy RL:强化学习教程: 强化学习教程 - 图书

    导演:王琦
    强化学习作为机器学习及人工智能领域的一种重要方法,在游戏、自动驾驶、机器人路线规划等领域得到了广泛的应用。 本书结合了李宏毅老师的“深度强化学习”、周博磊老师的“强化学习纲要”、李科浇老师的“世界冠军带你从零实践强化学习”公开课的精华内容,在理论严谨的基础上深入浅出地介绍马尔可夫决策过程、蒙特卡洛方法、时序差分方法、Sarsa、Q 学习等传统强化学习算法,以及策略梯度、近端策略优化、深度Q 网络、深度确定性策略梯度等常见深度强化学习算法的基本概念和方法,并以大量生动有趣的例子帮助读者理解强化学习问题的建模过程以及核心算法的细节。 此外,本书还提供较为全面的习题解答以及Python 代码实现,可以让读者进行端到端、从理论到轻松实践的全生态学习,充分掌握强化学习算法的原理并能进行实战。 本书适合对强化学习感兴趣的读者阅读,也可以作为相关课程的配套教材。
    Easy RL:强化学习教程: 强化学习教程
    搜索《Easy RL:强化学习教程: 强化学习教程》
    图书

    Easy RL:强化学习教程 - 图书

    导演:王琦
    强化学习作为机器学习及人工智能领域的一种重要方法,在游戏、自动驾驶、机器人路线规划等领域得到了广泛的应用。 本书结合了李宏毅老师的“深度强化学习”、周博磊老师的“强化学习纲要”、李科浇老师的“世界冠军带你从零实践强化学习”公开课的精华内容,在理论严谨的基础上深入浅出地介绍马尔可夫决策过程、蒙特卡洛方法、时序差分方法、Sarsa、Q 学习等传统强化学习算法,以及策略梯度、近端策略优化、深度Q 网络、深度确定性策略梯度等常见深度强化学习算法的基本概念和方法,并以大量生动有趣的例子帮助读者理解强化学习问题的建模过程以及核心算法的细节。 此外,本书还提供较为全面的习题解答以及Python 代码实现,可以让读者进行端到端、从理论到轻松实践的全生态学习,充分掌握强化学习算法的原理并能进行实战。 本书适合对强化学习感兴趣的读者阅读,也可以作为相关课程的配套教材。
    Easy RL:强化学习教程
    搜索《Easy RL:强化学习教程》
    图书

    深度强化学习实践 - 图书

    2021计算机·人工智能
    导演:马克西姆·拉潘
    本书的主题是强化学习(Reinforcement Learning,RL),它是机器学习(Machine Learning,ML)的一个分支,强调如何解决在复杂环境中选择最优动作时产生的通用且极具挑战的问题。学习过程仅由奖励值和从环境中获得的观察驱动。该模型非常通用,能应用于多个真实场景,从玩游戏到优化复杂制造过程都能涵盖。
    深度强化学习实践
    搜索《深度强化学习实践》
    图书

    深度强化学习实践 - 图书

    2021计算机·人工智能
    导演:马克西姆·拉潘
    本书的主题是强化学习(Reinforcement Learning,RL),它是机器学习(Machine Learning,ML)的一个分支,强调如何解决在复杂环境中选择最优动作时产生的通用且极具挑战的问题。学习过程仅由奖励值和从环境中获得的观察驱动。该模型非常通用,能应用于多个真实场景,从玩游戏到优化复杂制造过程都能涵盖。
    深度强化学习实践
    搜索《深度强化学习实践》
    图书

    强化学习 - 图书

    2020计算机·编程设计
    导演:邹伟 鬲玲 刘昱杓
    《强化学习》一书内容系统全面,覆盖面广,既有理论阐述、公式推导,又有丰富的典型案例,理论联系实际。书中全面系统地描述了强化学习的起源、背景和分类,各类强化学习算法的原理、实现方式以及各算法间的关系,为读者构建了一个完整的强化学习知识体系;同时包含丰富的经典案例,如各类迷宫寻宝、飞翔小鸟、扑克牌、小车爬山、倒立摆、钟摆、多臂赌博机、五子棋、AlphaGo、AlphaGo Zero、AlphaZero等,通过给出它们对应的详细案例说明和代码描述,让读者深度理解各类强化学习算法的精髓。《强化学习》案例生动形象,描述深入浅出,代码简洁易懂,注释详细。 《强化学习》可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对强化学习感兴趣的研究人员和工程技术人员阅读参考。
    强化学习
    搜索《强化学习》
    图书

    强化学习 - 图书

    2020计算机·编程设计
    导演:邹伟 鬲玲 刘昱杓
    《强化学习》一书内容系统全面,覆盖面广,既有理论阐述、公式推导,又有丰富的典型案例,理论联系实际。书中全面系统地描述了强化学习的起源、背景和分类,各类强化学习算法的原理、实现方式以及各算法间的关系,为读者构建了一个完整的强化学习知识体系;同时包含丰富的经典案例,如各类迷宫寻宝、飞翔小鸟、扑克牌、小车爬山、倒立摆、钟摆、多臂赌博机、五子棋、AlphaGo、AlphaGo Zero、AlphaZero等,通过给出它们对应的详细案例说明和代码描述,让读者深度理解各类强化学习算法的精髓。《强化学习》案例生动形象,描述深入浅出,代码简洁易懂,注释详细。 《强化学习》可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对强化学习感兴趣的研究人员和工程技术人员阅读参考。
    强化学习
    搜索《强化学习》
    图书

    强化学习 - 图书

    导演:Richard S. Sutton
    《强化学习(第2版)》作为强化学习思想的深度解剖之作,被业内公认为是一本强化学习基础理论的经典著作。它从强化学习的基本思想出发,深入浅出又严谨细致地介绍了马尔可夫决策过程、蒙特卡洛方法、时序差分方法、同轨离轨策略等强化学习的基本概念和方法,并以大量的实例帮助读者理解强化学习的问题建模过程以及核心的算法细节。 《强化学习(第2版)》适合所有对强化学习感兴趣的读者阅读、收藏。
    强化学习
    搜索《强化学习》
    图书

    强化学习 - 图书

    导演:Marco Wiering
    本书共有19章,分为六大部分,详细介绍了强化学习中各领域的基本理论和新进展,内容包括:MDP、动态规划、蒙特卡罗方法、批处理强化学习、TD学习、Q学习、策略迭代的小二乘法、迁移学习、贝叶斯强化学习、、一阶逻辑MDP、层次式强化学习、演化计算、预测性定义状态表示、去中心化的部分可观察MDP、博弈论和多学习器强化学习等内容,并阐述强化学习与心理和神经科学、游戏领域、机器人领域的关系和应用,后提出未来发展趋势及研究热点问题,有助于年轻的研究者了解整个强化学习领域,发现新的研究方向。本书适合作为高等院校机器学习相关课程的参考书,也可作为人工智能领域从业技术人员的参考用书。
    强化学习
    搜索《强化学习》
    图书
    加载中...